Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
|
imadmres |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) |
3 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) = ( ( 𝐴 ∖ 𝑈 ) ∩ dom 𝐹 ) |
4 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 Fn 𝑋 ) |
6 |
5
|
fndmd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → dom 𝐹 = 𝑋 ) |
7 |
6
|
ineq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐴 ∖ 𝑈 ) ∩ dom 𝐹 ) = ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) |
8 |
3 7
|
syl5eq |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) = ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) |
9 |
8
|
imaeq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) ) = ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ) |
10 |
2 9
|
eqtr3id |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) = ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ) |
11 |
|
indif1 |
⊢ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) = ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) |
12 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝑋 ) ⊆ 𝑋 |
13 |
|
ssdif |
⊢ ( ( 𝐴 ∩ 𝑋 ) ⊆ 𝑋 → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) |
15 |
11 14
|
eqsstri |
⊢ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ⊆ ( 𝑋 ∖ 𝑈 ) |
16 |
|
imass2 |
⊢ ( ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ⊆ ( 𝑋 ∖ 𝑈 ) → ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) |
17 |
15 16
|
mp1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) |
18 |
10 17
|
eqsstrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) |
19 |
|
sslin |
⊢ ( ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
21 |
|
eldifn |
⊢ ( 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) → ¬ 𝑤 ∈ 𝑈 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ¬ 𝑤 ∈ 𝑈 ) |
23 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
24 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
25 |
|
eldifi |
⊢ ( 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) → 𝑤 ∈ 𝑋 ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝑤 ∈ 𝑋 ) |
27 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
28 |
23 24 26 27
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ( 𝑤 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
29 |
22 28
|
mtbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) |
31 |
|
difss |
⊢ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 |
32 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
33 |
32
|
notbid |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
34 |
33
|
ralima |
⊢ ( ( 𝐹 Fn 𝑋 ∧ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
35 |
5 31 34
|
sylancl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
36 |
30 35
|
mpbird |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ) |
37 |
|
disjr |
⊢ ( ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ↔ ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) |
39 |
|
sseq0 |
⊢ ( ( ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ∧ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) = ∅ ) |
40 |
20 38 39
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) = ∅ ) |