Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqf | ⊢ KQ : Top ⟶ Kol2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ∈ V | |
| 2 | df-kq | ⊢ KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ) | |
| 3 | 1 2 | fnmpti | ⊢ KQ Fn Top |
| 4 | kqt0 | ⊢ ( 𝑥 ∈ Top ↔ ( KQ ‘ 𝑥 ) ∈ Kol2 ) | |
| 5 | 4 | biimpi | ⊢ ( 𝑥 ∈ Top → ( KQ ‘ 𝑥 ) ∈ Kol2 ) |
| 6 | 5 | rgen | ⊢ ∀ 𝑥 ∈ Top ( KQ ‘ 𝑥 ) ∈ Kol2 |
| 7 | ffnfv | ⊢ ( KQ : Top ⟶ Kol2 ↔ ( KQ Fn Top ∧ ∀ 𝑥 ∈ Top ( KQ ‘ 𝑥 ) ∈ Kol2 ) ) | |
| 8 | 3 6 7 | mpbir2an | ⊢ KQ : Top ⟶ Kol2 |