Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
4 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑋 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝑈 ⊆ 𝑋 ) |
6 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑈 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) |
7 |
6
|
3expia |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
8 |
3 5 7
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
9 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) |
10 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
11 |
10
|
ex |
⊢ ( Fun 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
12 |
3 9 11
|
3syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
13 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
14 |
5
|
sselda |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑋 ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝐴 ∈ 𝑋 ) |
16 |
1
|
kqfeq |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) ) |
18 |
|
eleq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) |
19 |
|
eleq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑤 ) ) |
20 |
18 19
|
bibi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) ) |
21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) |
22 |
17 21
|
bitrdi |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) ) |
23 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑈 ∈ 𝐽 ) |
24 |
|
eleq2 |
⊢ ( 𝑤 = 𝑈 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑈 ) ) |
25 |
|
eleq2 |
⊢ ( 𝑤 = 𝑈 → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑈 ) ) |
26 |
24 25
|
bibi12d |
⊢ ( 𝑤 = 𝑈 → ( ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ↔ ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
27 |
26
|
rspcv |
⊢ ( 𝑈 ∈ 𝐽 → ( ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
28 |
23 27
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
29 |
22 28
|
sylbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
30 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) |
31 |
|
biimp |
⊢ ( ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) → ( 𝑧 ∈ 𝑈 → 𝐴 ∈ 𝑈 ) ) |
32 |
29 30 31
|
syl6ci |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
33 |
32
|
rexlimdva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
34 |
12 33
|
syld |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → 𝐴 ∈ 𝑈 ) ) |
35 |
8 34
|
impbid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |