| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nrmtop | 
							⊢ ( 𝐽  ∈  Nrm  →  𝐽  ∈  Top )  | 
						
						
							| 2 | 
							
								
							 | 
							toptopon2 | 
							⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							⊢ ( 𝐽  ∈  Nrm  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ∪  𝐽  ↦  { 𝑦  ∈  𝐽  ∣  𝑥  ∈  𝑦 } )  =  ( 𝑥  ∈  ∪  𝐽  ↦  { 𝑦  ∈  𝐽  ∣  𝑥  ∈  𝑦 } )  | 
						
						
							| 5 | 
							
								4
							 | 
							kqnrmlem1 | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐽  ∈  Nrm )  →  ( KQ ‘ 𝐽 )  ∈  Nrm )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpancom | 
							⊢ ( 𝐽  ∈  Nrm  →  ( KQ ‘ 𝐽 )  ∈  Nrm )  | 
						
						
							| 7 | 
							
								
							 | 
							nrmtop | 
							⊢ ( ( KQ ‘ 𝐽 )  ∈  Nrm  →  ( KQ ‘ 𝐽 )  ∈  Top )  | 
						
						
							| 8 | 
							
								
							 | 
							kqtop | 
							⊢ ( 𝐽  ∈  Top  ↔  ( KQ ‘ 𝐽 )  ∈  Top )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibr | 
							⊢ ( ( KQ ‘ 𝐽 )  ∈  Nrm  →  𝐽  ∈  Top )  | 
						
						
							| 10 | 
							
								9 2
							 | 
							sylib | 
							⊢ ( ( KQ ‘ 𝐽 )  ∈  Nrm  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 11 | 
							
								4
							 | 
							kqnrmlem2 | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  →  𝐽  ∈  Nrm )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpancom | 
							⊢ ( ( KQ ‘ 𝐽 )  ∈  Nrm  →  𝐽  ∈  Nrm )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							impbii | 
							⊢ ( 𝐽  ∈  Nrm  ↔  ( KQ ‘ 𝐽 )  ∈  Nrm )  |