| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							kqval.2 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  { 𝑦  ∈  𝐽  ∣  𝑥  ∈  𝑦 } )  | 
						
						
							| 2 | 
							
								
							 | 
							topontop | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  →  𝐽  ∈  Top )  | 
						
						
							| 4 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ( KQ ‘ 𝐽 )  ∈  Nrm )  | 
						
						
							| 5 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  𝑧  ∈  𝐽 )  | 
						
						
							| 7 | 
							
								1
							 | 
							kqopn | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑧  ∈  𝐽 )  →  ( 𝐹  “  𝑧 )  ∈  ( KQ ‘ 𝐽 ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ( 𝐹  “  𝑧 )  ∈  ( KQ ‘ 𝐽 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elin1d | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							kqcld | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑤  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐹  “  𝑤 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 12 | 
							
								5 10 11
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ( 𝐹  “  𝑤 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 13 | 
							
								9
							 | 
							elin2d | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  𝒫  𝑧 )  | 
						
						
							| 14 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑤  ∈  𝒫  𝑧  →  𝑤  ⊆  𝑧 )  | 
						
						
							| 15 | 
							
								
							 | 
							imass2 | 
							⊢ ( 𝑤  ⊆  𝑧  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  𝑧 ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3syl | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  𝑧 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nrmsep3 | 
							⊢ ( ( ( KQ ‘ 𝐽 )  ∈  Nrm  ∧  ( ( 𝐹  “  𝑧 )  ∈  ( KQ ‘ 𝐽 )  ∧  ( 𝐹  “  𝑤 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) )  ∧  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  𝑧 ) ) )  →  ∃ 𝑚  ∈  ( KQ ‘ 𝐽 ) ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) )  | 
						
						
							| 18 | 
							
								4 8 12 16 17
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ∃ 𝑚  ∈  ( KQ ‘ 𝐽 ) ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							kqid | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹  ∈  ( 𝐽  Cn  ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝐹  ∈  ( 𝐽  Cn  ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑚  ∈  ( KQ ‘ 𝐽 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							cnima | 
							⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  ( KQ ‘ 𝐽 ) )  ∧  𝑚  ∈  ( KQ ‘ 𝐽 ) )  →  ( ◡ 𝐹  “  𝑚 )  ∈  𝐽 )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  𝑚 )  ∈  𝐽 )  | 
						
						
							| 25 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  𝑚 )  | 
						
						
							| 26 | 
							
								1
							 | 
							kqffn | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹  Fn  𝑋 )  | 
						
						
							| 27 | 
							
								
							 | 
							fnfun | 
							⊢ ( 𝐹  Fn  𝑋  →  Fun  𝐹 )  | 
						
						
							| 28 | 
							
								19 26 27
							 | 
							3syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  Fun  𝐹 )  | 
						
						
							| 29 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑤  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 31 | 
							
								30
							 | 
							cldss | 
							⊢ ( 𝑤  ∈  ( Clsd ‘ 𝐽 )  →  𝑤  ⊆  ∪  𝐽 )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑤  ⊆  ∪  𝐽 )  | 
						
						
							| 33 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝐹  Fn  𝑋  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 34 | 
							
								19 26 33
							 | 
							3syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 35 | 
							
								
							 | 
							toponuni | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 36 | 
							
								19 35
							 | 
							syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  dom  𝐹  =  ∪  𝐽 )  | 
						
						
							| 38 | 
							
								32 37
							 | 
							sseqtrrd | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑤  ⊆  dom  𝐹 )  | 
						
						
							| 39 | 
							
								
							 | 
							funimass3 | 
							⊢ ( ( Fun  𝐹  ∧  𝑤  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ↔  𝑤  ⊆  ( ◡ 𝐹  “  𝑚 ) ) )  | 
						
						
							| 40 | 
							
								28 38 39
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ↔  𝑤  ⊆  ( ◡ 𝐹  “  𝑚 ) ) )  | 
						
						
							| 41 | 
							
								25 40
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑤  ⊆  ( ◡ 𝐹  “  𝑚 ) )  | 
						
						
							| 42 | 
							
								1
							 | 
							kqtopon | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( KQ ‘ 𝐽 )  ∈  ( TopOn ‘ ran  𝐹 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							topontop | 
							⊢ ( ( KQ ‘ 𝐽 )  ∈  ( TopOn ‘ ran  𝐹 )  →  ( KQ ‘ 𝐽 )  ∈  Top )  | 
						
						
							| 44 | 
							
								19 42 43
							 | 
							3syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( KQ ‘ 𝐽 )  ∈  Top )  | 
						
						
							| 45 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑚  ∈  ( KQ ‘ 𝐽 )  →  𝑚  ⊆  ∪  ( KQ ‘ 𝐽 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑚  ⊆  ∪  ( KQ ‘ 𝐽 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							⊢ ∪  ( KQ ‘ 𝐽 )  =  ∪  ( KQ ‘ 𝐽 )  | 
						
						
							| 48 | 
							
								47
							 | 
							clscld | 
							⊢ ( ( ( KQ ‘ 𝐽 )  ∈  Top  ∧  𝑚  ⊆  ∪  ( KQ ‘ 𝐽 ) )  →  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 49 | 
							
								44 46 48
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							cnclima | 
							⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  ( KQ ‘ 𝐽 ) )  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  →  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 51 | 
							
								21 49 50
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 52 | 
							
								47
							 | 
							sscls | 
							⊢ ( ( ( KQ ‘ 𝐽 )  ∈  Top  ∧  𝑚  ⊆  ∪  ( KQ ‘ 𝐽 ) )  →  𝑚  ⊆  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  | 
						
						
							| 53 | 
							
								44 46 52
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑚  ⊆  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							imass2 | 
							⊢ ( 𝑚  ⊆  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  →  ( ◡ 𝐹  “  𝑚 )  ⊆  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  𝑚 )  ⊆  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 56 | 
							
								30
							 | 
							clsss2 | 
							⊢ ( ( ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ◡ 𝐹  “  𝑚 )  ⊆  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 57 | 
							
								51 55 56
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							imass2 | 
							⊢ ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 )  →  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ⊆  ( ◡ 𝐹  “  ( 𝐹  “  𝑧 ) ) )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							syl | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ⊆  ( ◡ 𝐹  “  ( 𝐹  “  𝑧 ) ) )  | 
						
						
							| 61 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  𝑧  ∈  𝐽 )  | 
						
						
							| 62 | 
							
								1
							 | 
							kqsat | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑧  ∈  𝐽 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑧 ) )  =  𝑧 )  | 
						
						
							| 63 | 
							
								19 61 62
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑧 ) )  =  𝑧 )  | 
						
						
							| 64 | 
							
								60 63
							 | 
							sseqtrd | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ◡ 𝐹  “  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) )  ⊆  𝑧 )  | 
						
						
							| 65 | 
							
								57 64
							 | 
							sstrd | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  𝑧 )  | 
						
						
							| 66 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑢  =  ( ◡ 𝐹  “  𝑚 )  →  ( 𝑤  ⊆  𝑢  ↔  𝑤  ⊆  ( ◡ 𝐹  “  𝑚 ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑢  =  ( ◡ 𝐹  “  𝑚 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  =  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							sseq1d | 
							⊢ ( 𝑢  =  ( ◡ 𝐹  “  𝑚 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  𝑧 ) )  | 
						
						
							| 69 | 
							
								66 68
							 | 
							anbi12d | 
							⊢ ( 𝑢  =  ( ◡ 𝐹  “  𝑚 )  →  ( ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 )  ↔  ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  𝑧 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							rspcev | 
							⊢ ( ( ( ◡ 𝐹  “  𝑚 )  ∈  𝐽  ∧  ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  𝑚 ) )  ⊆  𝑧 ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 ) )  | 
						
						
							| 71 | 
							
								24 41 65 70
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  ∧  ( 𝑚  ∈  ( KQ ‘ 𝐽 )  ∧  ( ( 𝐹  “  𝑤 )  ⊆  𝑚  ∧  ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 )  ⊆  ( 𝐹  “  𝑧 ) ) ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 ) )  | 
						
						
							| 72 | 
							
								18 71
							 | 
							rexlimddv | 
							⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ralrimivva | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  →  ∀ 𝑧  ∈  𝐽 ∀ 𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ∃ 𝑢  ∈  𝐽 ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							isnrm | 
							⊢ ( 𝐽  ∈  Nrm  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑧  ∈  𝐽 ∀ 𝑤  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑧 ) ∃ 𝑢  ∈  𝐽 ( 𝑤  ⊆  𝑢  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑢 )  ⊆  𝑧 ) ) )  | 
						
						
							| 75 | 
							
								3 73 74
							 | 
							sylanbrc | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( KQ ‘ 𝐽 )  ∈  Nrm )  →  𝐽  ∈  Nrm )  |