Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
|
imassrn |
⊢ ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 |
3 |
2
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ) |
4 |
1
|
kqsat |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |
5 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ∈ 𝐽 ) |
6 |
4 5
|
eqeltrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) |
7 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
8 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
9 |
7 8
|
sylib |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
11 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) ) ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) ) ) |
13 |
3 6 12
|
mpbir2and |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
14 |
1
|
kqval |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
16 |
13 15
|
eleqtrrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ∈ ( KQ ‘ 𝐽 ) ) |