Metamath Proof Explorer


Theorem kqopn

Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion kqopn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹𝑈 ) ∈ ( KQ ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 imassrn ( 𝐹𝑈 ) ⊆ ran 𝐹
3 2 a1i ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹𝑈 ) ⊆ ran 𝐹 )
4 1 kqsat ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹 “ ( 𝐹𝑈 ) ) = 𝑈 )
5 simpr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → 𝑈𝐽 )
6 4 5 eqeltrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ 𝐽 )
7 1 kqffn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 )
8 dffn4 ( 𝐹 Fn 𝑋𝐹 : 𝑋onto→ ran 𝐹 )
9 7 8 sylib ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋onto→ ran 𝐹 )
10 9 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → 𝐹 : 𝑋onto→ ran 𝐹 )
11 elqtop3 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ( ( 𝐹𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑈 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ 𝐽 ) ) )
12 10 11 syldan ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( ( 𝐹𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑈 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ 𝐽 ) ) )
13 3 6 12 mpbir2and ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) )
14 1 kqval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )
15 14 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )
16 13 15 eleqtrrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → ( 𝐹𝑈 ) ∈ ( KQ ‘ 𝐽 ) )