Step |
Hyp |
Ref |
Expression |
1 |
|
regtop |
⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ Top ) |
2 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
3 |
1 2
|
sylib |
⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
5 |
4
|
kqreglem1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg ) |
6 |
3 5
|
mpancom |
⊢ ( 𝐽 ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Reg ) |
7 |
|
regtop |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Top ) |
8 |
|
kqtop |
⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top ) |
9 |
7 8
|
sylibr |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Top ) |
10 |
9 2
|
sylib |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
11 |
4
|
kqreglem2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Reg ) |
12 |
10 11
|
mpancom |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Reg ) |
13 |
6 12
|
impbii |
⊢ ( 𝐽 ∈ Reg ↔ ( KQ ‘ 𝐽 ) ∈ Reg ) |