Metamath Proof Explorer


Theorem kqt0lem

Description: Lemma for kqt0 . (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion kqt0lem ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 1 kqopn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) → ( 𝐹𝑤 ) ∈ ( KQ ‘ 𝐽 ) )
3 2 adantlr ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ 𝑤𝐽 ) → ( 𝐹𝑤 ) ∈ ( KQ ‘ 𝐽 ) )
4 eleq2 ( 𝑧 = ( 𝐹𝑤 ) → ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ) )
5 eleq2 ( 𝑧 = ( 𝐹𝑤 ) → ( ( 𝐹𝑏 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) )
6 4 5 bibi12d ( 𝑧 = ( 𝐹𝑤 ) → ( ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) ↔ ( ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) ) )
7 6 rspcv ( ( 𝐹𝑤 ) ∈ ( KQ ‘ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) ) )
8 3 7 syl ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ 𝑤𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) ) )
9 1 kqfvima ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽𝑎𝑋 ) → ( 𝑎𝑤 ↔ ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ) )
10 9 3expa ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) ∧ 𝑎𝑋 ) → ( 𝑎𝑤 ↔ ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ) )
11 10 adantrr ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( 𝑎𝑤 ↔ ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ) )
12 1 kqfvima ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽𝑏𝑋 ) → ( 𝑏𝑤 ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) )
13 12 3expa ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) ∧ 𝑏𝑋 ) → ( 𝑏𝑤 ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) )
14 13 adantrl ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( 𝑏𝑤 ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) )
15 11 14 bibi12d ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝐽 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ( 𝑎𝑤𝑏𝑤 ) ↔ ( ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) ) )
16 15 an32s ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ 𝑤𝐽 ) → ( ( 𝑎𝑤𝑏𝑤 ) ↔ ( ( 𝐹𝑎 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑏 ) ∈ ( 𝐹𝑤 ) ) ) )
17 8 16 sylibrd ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ 𝑤𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝑎𝑤𝑏𝑤 ) ) )
18 17 ralrimdva ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ∀ 𝑤𝐽 ( 𝑎𝑤𝑏𝑤 ) ) )
19 1 kqfeq ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑎𝑋𝑏𝑋 ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ∀ 𝑦𝐽 ( 𝑎𝑦𝑏𝑦 ) ) )
20 19 3expb ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ∀ 𝑦𝐽 ( 𝑎𝑦𝑏𝑦 ) ) )
21 elequ2 ( 𝑦 = 𝑤 → ( 𝑎𝑦𝑎𝑤 ) )
22 elequ2 ( 𝑦 = 𝑤 → ( 𝑏𝑦𝑏𝑤 ) )
23 21 22 bibi12d ( 𝑦 = 𝑤 → ( ( 𝑎𝑦𝑏𝑦 ) ↔ ( 𝑎𝑤𝑏𝑤 ) ) )
24 23 cbvralvw ( ∀ 𝑦𝐽 ( 𝑎𝑦𝑏𝑦 ) ↔ ∀ 𝑤𝐽 ( 𝑎𝑤𝑏𝑤 ) )
25 20 24 bitrdi ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ∀ 𝑤𝐽 ( 𝑎𝑤𝑏𝑤 ) ) )
26 18 25 sylibrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) )
27 26 ralrimivva ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑎𝑋𝑏𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) )
28 1 kqffn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 )
29 eleq1 ( 𝑢 = ( 𝐹𝑎 ) → ( 𝑢𝑧 ↔ ( 𝐹𝑎 ) ∈ 𝑧 ) )
30 29 bibi1d ( 𝑢 = ( 𝐹𝑎 ) → ( ( 𝑢𝑧𝑣𝑧 ) ↔ ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) ) )
31 30 ralbidv ( 𝑢 = ( 𝐹𝑎 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) ) )
32 eqeq1 ( 𝑢 = ( 𝐹𝑎 ) → ( 𝑢 = 𝑣 ↔ ( 𝐹𝑎 ) = 𝑣 ) )
33 31 32 imbi12d ( 𝑢 = ( 𝐹𝑎 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ) )
34 33 ralbidv ( 𝑢 = ( 𝐹𝑎 ) → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ) )
35 34 ralrn ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎𝑋𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ) )
36 eleq1 ( 𝑣 = ( 𝐹𝑏 ) → ( 𝑣𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) )
37 36 bibi2d ( 𝑣 = ( 𝐹𝑏 ) → ( ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) ↔ ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) ) )
38 37 ralbidv ( 𝑣 = ( 𝐹𝑏 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) ) )
39 eqeq2 ( 𝑣 = ( 𝐹𝑏 ) → ( ( 𝐹𝑎 ) = 𝑣 ↔ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) )
40 38 39 imbi12d ( 𝑣 = ( 𝐹𝑏 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
41 40 ralrn ( 𝐹 Fn 𝑋 → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ↔ ∀ 𝑏𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
42 41 ralbidv ( 𝐹 Fn 𝑋 → ( ∀ 𝑎𝑋𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧𝑣𝑧 ) → ( 𝐹𝑎 ) = 𝑣 ) ↔ ∀ 𝑎𝑋𝑏𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
43 35 42 bitrd ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎𝑋𝑏𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
44 28 43 syl ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎𝑋𝑏𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹𝑎 ) ∈ 𝑧 ↔ ( 𝐹𝑏 ) ∈ 𝑧 ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
45 27 44 mpbird ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) )
46 1 kqtopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) )
47 ist0-2 ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ) )
48 46 47 syl ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢𝑧𝑣𝑧 ) → 𝑢 = 𝑣 ) ) )
49 45 48 mpbird ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 )