Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
1
|
kqopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
3 |
2
|
adantlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
4 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
6 |
4 5
|
bibi12d |
⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
7 |
6
|
rspcv |
⊢ ( ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
8 |
3 7
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
9 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
10 |
9
|
3expa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
11 |
10
|
adantrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
12 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
14 |
13
|
adantrl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
15 |
11 14
|
bibi12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
16 |
15
|
an32s |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
17 |
8 16
|
sylibrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
18 |
17
|
ralrimdva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
19 |
1
|
kqfeq |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ) ) |
20 |
19
|
3expb |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ) ) |
21 |
|
elequ2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ 𝑤 ) ) |
22 |
|
elequ2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑤 ) ) |
23 |
21 22
|
bibi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ↔ ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
24 |
23
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) |
25 |
20 24
|
bitrdi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
26 |
18 25
|
sylibrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
27 |
26
|
ralrimivva |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
28 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
29 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( 𝑢 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ) ) |
30 |
29
|
bibi1d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) ) |
32 |
|
eqeq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( 𝑢 = 𝑣 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) |
33 |
31 32
|
imbi12d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
35 |
34
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
36 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( 𝑣 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) |
37 |
36
|
bibi2d |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) ) |
39 |
|
eqeq2 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
40 |
38 39
|
imbi12d |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
41 |
40
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
43 |
35 42
|
bitrd |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
44 |
28 43
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
45 |
27 44
|
mpbird |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) |
46 |
1
|
kqtopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
47 |
|
ist0-2 |
⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) ) |
48 |
46 47
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) ) |
49 |
45 48
|
mpbird |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |