| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 2 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
| 3 |
2
|
kqtopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 4 |
1 3
|
sylbi |
⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 5 |
|
topontop |
⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 7 |
|
0opn |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → ∅ ∈ ( KQ ‘ 𝐽 ) ) |
| 8 |
|
elfvdm |
⊢ ( ∅ ∈ ( KQ ‘ 𝐽 ) → 𝐽 ∈ dom KQ ) |
| 9 |
7 8
|
syl |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → 𝐽 ∈ dom KQ ) |
| 10 |
|
ovex |
⊢ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ∈ V |
| 11 |
|
df-kq |
⊢ KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 12 |
10 11
|
dmmpti |
⊢ dom KQ = Top |
| 13 |
9 12
|
eleqtrdi |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → 𝐽 ∈ Top ) |
| 14 |
6 13
|
impbii |
⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top ) |