| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kqval.2 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  { 𝑦  ∈  𝐽  ∣  𝑥  ∈  𝑦 } ) | 
						
							| 2 | 1 | kqval | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( KQ ‘ 𝐽 )  =  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 3 | 1 | kqffn | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹  Fn  𝑋 ) | 
						
							| 4 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑋  ↔  𝐹 : 𝑋 –onto→ ran  𝐹 ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹 : 𝑋 –onto→ ran  𝐹 ) | 
						
							| 6 |  | qtoptopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 : 𝑋 –onto→ ran  𝐹 )  →  ( 𝐽  qTop  𝐹 )  ∈  ( TopOn ‘ ran  𝐹 ) ) | 
						
							| 7 | 5 6 | mpdan | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  qTop  𝐹 )  ∈  ( TopOn ‘ ran  𝐹 ) ) | 
						
							| 8 | 2 7 | eqeltrd | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( KQ ‘ 𝐽 )  ∈  ( TopOn ‘ ran  𝐹 ) ) |