Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
krippen.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝑋 ) |
8 |
|
krippen.n |
⊢ 𝑁 = ( 𝑆 ‘ 𝑌 ) |
9 |
|
krippen.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
krippen.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
11 |
|
krippen.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
12 |
|
krippen.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
13 |
|
krippen.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
14 |
|
krippen.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
15 |
|
krippen.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
16 |
|
krippen.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐸 ) ) |
17 |
|
krippen.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐹 ) ) |
18 |
|
krippen.3 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
19 |
|
krippen.4 |
⊢ ( 𝜑 → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐹 ) ) |
20 |
|
krippen.5 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
21 |
|
krippen.6 |
⊢ ( 𝜑 → 𝐹 = ( 𝑁 ‘ 𝐸 ) ) |
22 |
|
krippen.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
23 |
|
krippen.7 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐸 ) ) |
24 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐸 ) ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐵 ∈ 𝑃 ) |
29 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
30 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐸 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐸 = 𝐶 ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐶 ) ) |
33 |
30 32
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐶 ) ) |
34 |
1 2 3 22 25 26 27 26 28 33
|
legeq |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 = 𝐴 ) |
35 |
1 2 3 25 26 27 26 28 29 34
|
tgcgreq |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 = 𝐵 ) |
36 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
37 |
35 34 36
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
38 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝑋 ∈ 𝑃 ) |
39 |
1 2 3 4 5 25 38 7 27
|
mirinv |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝑋 = 𝐴 ) ) |
40 |
37 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝑋 = 𝐴 ) |
41 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐹 ∈ 𝑃 ) |
42 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐹 ) ) |
43 |
42 32
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐶 ) ) |
44 |
1 2 3 25 26 41 26 43
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 = 𝐹 ) |
45 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐹 = ( 𝑁 ‘ 𝐸 ) ) |
46 |
31 44 45
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝑁 ‘ 𝐸 ) = 𝐸 ) |
47 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝑌 ∈ 𝑃 ) |
48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐸 ∈ 𝑃 ) |
49 |
1 2 3 4 5 25 47 8 48
|
mirinv |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( ( 𝑁 ‘ 𝐸 ) = 𝐸 ↔ 𝑌 = 𝐸 ) ) |
50 |
46 49
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝑌 = 𝐸 ) |
51 |
40 50
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → ( 𝑋 𝐼 𝑌 ) = ( 𝐴 𝐼 𝐸 ) ) |
52 |
24 51
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐶 ) → 𝐶 ∈ ( 𝑋 𝐼 𝑌 ) ) |
53 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
55 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
56 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) |
57 |
1 2 3 4 5 53 55 56
|
mirf |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝑆 ‘ 𝐶 ) : 𝑃 ⟶ 𝑃 ) |
58 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝑌 ∈ 𝑃 ) |
59 |
57 58
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ 𝑃 ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ 𝑃 ) |
61 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑞 ∈ 𝑃 ) |
62 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐶 ∈ 𝑃 ) |
63 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑌 ∈ 𝑃 ) |
64 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ) |
65 |
1 2 3 4 5 6 11 56 15
|
mirbtwn |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
66 |
65
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
67 |
1 2 3 54 60 61 62 63 64 66
|
tgbtwnexch3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐶 ∈ ( 𝑞 𝐼 𝑌 ) ) |
68 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑋 ∈ 𝑃 ) |
69 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐴 ∈ 𝑃 ) |
71 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐵 ∈ 𝑃 ) |
73 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) |
74 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐸 ∈ 𝑃 ) |
75 |
57 74
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ∈ 𝑃 ) |
76 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐹 ∈ 𝑃 ) |
77 |
57 76
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ∈ 𝑃 ) |
78 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
79 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
80 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ∈ 𝑃 ) |
81 |
1 2 3 78 79 80
|
tgbtwntriv1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ ( 𝐴 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐶 ) |
83 |
82
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → ( 𝐴 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) = ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
84 |
81 83
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
85 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
86 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
87 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ∈ 𝑃 ) |
88 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
89 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐸 ∈ 𝑃 ) |
90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐸 ≠ 𝐶 ) |
91 |
1 2 3 6 9 11 12 16
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐸 𝐼 𝐴 ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐸 𝐼 𝐴 ) ) |
93 |
1 2 3 4 5 85 88 56 89
|
mirbtwn |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) 𝐼 𝐸 ) ) |
94 |
1 2 3 85 87 88 89 93
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐸 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
95 |
1 3 85 89 88 86 87 90 92 94
|
tgbtwnconn2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ∨ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
96 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐸 ) ) |
97 |
1 2 3 4 5 53 55 56 74
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) = ( 𝐶 − 𝐸 ) ) |
98 |
96 97
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
100 |
1 2 3 22 85 86 87 88 86 95 99
|
legbtwn |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
101 |
84 100
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐴 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
102 |
1 2 3 53 55 69 75 101
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐴 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) 𝐼 𝐶 ) ) |
103 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
104 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ 𝑃 ) |
105 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ∈ 𝑃 ) |
106 |
1 2 3 103 104 105
|
tgbtwntriv1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ( 𝐵 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
107 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
108 |
107
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → ( 𝐵 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) = ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
109 |
106 108
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
110 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
111 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
112 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ∈ 𝑃 ) |
113 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
114 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ 𝑃 ) |
115 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
116 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
117 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐸 ∈ 𝑃 ) |
118 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐹 ) ) |
119 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐹 = 𝐶 ) |
120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐶 ) ) |
121 |
118 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐶 ) ) |
122 |
1 2 3 115 116 117 116 121
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐶 = 𝐸 ) |
123 |
122
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐶 ) → 𝐸 = 𝐶 ) |
124 |
123
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐹 = 𝐶 ) → 𝐸 = 𝐶 ) |
125 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐹 = 𝐶 ) → 𝐸 ≠ 𝐶 ) |
126 |
125
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐹 = 𝐶 ) → ¬ 𝐸 = 𝐶 ) |
127 |
124 126
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ¬ 𝐹 = 𝐶 ) |
128 |
127
|
neqned |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐹 ≠ 𝐶 ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ≠ 𝐶 ) |
130 |
1 2 3 6 10 11 13 17
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 𝐼 𝐵 ) ) |
131 |
130
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐹 𝐼 𝐵 ) ) |
132 |
1 2 3 4 5 110 113 56 114
|
mirbtwn |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) 𝐼 𝐹 ) ) |
133 |
1 2 3 110 112 113 114 132
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐹 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
134 |
1 3 110 114 113 111 112 129 131 133
|
tgbtwnconn2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ∨ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ∈ ( 𝐶 𝐼 𝐵 ) ) ) |
135 |
23 18 19
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐹 ) ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐹 ) ) |
137 |
1 2 3 4 5 53 55 56 76
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) = ( 𝐶 − 𝐹 ) ) |
138 |
136 137
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
140 |
1 2 3 22 110 111 112 113 111 134 139
|
legbtwn |
⊢ ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
141 |
109 140
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
142 |
1 2 3 53 55 71 77 141
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐵 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) 𝐼 𝐶 ) ) |
143 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐶 − 𝐹 ) ) |
144 |
143 97 137
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) = ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
145 |
1 2 3 53 55 75 55 77 144
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) − 𝐶 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) − 𝐶 ) ) |
146 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
147 |
1 2 3 53 55 69 55 71 146
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
148 |
|
eqid |
⊢ ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) = ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) |
149 |
1 2 3 4 5 53 59 148 75
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) |
150 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) |
151 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) |
152 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) |
153 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐹 = ( 𝑁 ‘ 𝐸 ) ) |
154 |
8
|
fveq1i |
⊢ ( 𝑁 ‘ 𝐸 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ 𝐸 ) |
155 |
153 154
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝑌 ) ‘ 𝐸 ) = 𝐹 ) |
156 |
1 2 3 4 5 53 56 150 151 152 55 58 74 76 155
|
mirauto |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) |
157 |
156
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ‘ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
158 |
149 157
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
159 |
1 2 3 53 59 75 59 77 158
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
160 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) = ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
161 |
1 2 3 53 75 69 55 59 77 71 55 59 102 142 145 147 159 160
|
tgifscgr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐴 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
162 |
1 2 3 53 69 59 71 59 161
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐵 ) ) |
163 |
162
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐵 ) ) |
164 |
54
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → 𝐺 ∈ TarskiG ) |
165 |
60
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ 𝑃 ) |
166 |
61
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → 𝑞 ∈ 𝑃 ) |
167 |
64
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ) |
168 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) |
169 |
168
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ) |
170 |
167 169
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
171 |
1 2 3 164 165 166 170
|
axtgbtwnid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝑞 ) |
172 |
171
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐴 ) = ( 𝑞 − 𝐴 ) ) |
173 |
171
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐵 ) = ( 𝑞 − 𝐵 ) ) |
174 |
163 172 173
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝐶 ) → ( 𝑞 − 𝐴 ) = ( 𝑞 − 𝐵 ) ) |
175 |
53
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
176 |
59
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ 𝑃 ) |
177 |
55
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
178 |
61
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝑞 ∈ 𝑃 ) |
179 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
180 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
181 |
71
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
182 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) |
183 |
60
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ 𝑃 ) |
184 |
64
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ) |
185 |
1 4 3 175 183 178 177 184
|
btwncolg3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐿 𝑞 ) ∨ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) = 𝑞 ) ) |
186 |
162
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) − 𝐵 ) ) |
187 |
146
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
188 |
1 4 3 175 176 177 178 179 180 181 2 182 185 186 187
|
lncgr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ≠ 𝐶 ) → ( 𝑞 − 𝐴 ) = ( 𝑞 − 𝐵 ) ) |
189 |
174 188
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( 𝑞 − 𝐴 ) = ( 𝑞 − 𝐵 ) ) |
190 |
189
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( 𝑞 − 𝐵 ) = ( 𝑞 − 𝐴 ) ) |
191 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) |
192 |
1 2 3 54 70 61 72 191
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑞 ∈ ( 𝐵 𝐼 𝐴 ) ) |
193 |
1 2 3 4 5 54 61 73 70 72 190 192
|
ismir |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐵 = ( ( 𝑆 ‘ 𝑞 ) ‘ 𝐴 ) ) |
194 |
193
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( ( 𝑆 ‘ 𝑞 ) ‘ 𝐴 ) = 𝐵 ) |
195 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
196 |
7
|
fveq1i |
⊢ ( 𝑀 ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝐴 ) |
197 |
195 196
|
eqtr2di |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝐴 ) = 𝐵 ) |
198 |
1 2 3 4 5 54 61 68 70 72 194 197
|
miduniq |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝑞 = 𝑋 ) |
199 |
198
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → ( 𝑞 𝐼 𝑌 ) = ( 𝑋 𝐼 𝑌 ) ) |
200 |
67 199
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) → 𝐶 ∈ ( 𝑋 𝐼 𝑌 ) ) |
201 |
1 2 3 4 5 53 58 8 74
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝑌 ∈ ( ( 𝑁 ‘ 𝐸 ) 𝐼 𝐸 ) ) |
202 |
153
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( 𝐹 𝐼 𝐸 ) = ( ( 𝑁 ‘ 𝐸 ) 𝐼 𝐸 ) ) |
203 |
201 202
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝑌 ∈ ( 𝐹 𝐼 𝐸 ) ) |
204 |
1 2 3 53 76 58 74 203
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝑌 ∈ ( 𝐸 𝐼 𝐹 ) ) |
205 |
1 2 3 4 5 53 55 56 74 58 76 204
|
mirbtwni |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐹 ) ) ) |
206 |
1 2 3 53 75 69 55 77 71 59 102 142 205
|
tgtrisegint |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑌 ) 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
207 |
200 206
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐶 ) → 𝐶 ∈ ( 𝑋 𝐼 𝑌 ) ) |
208 |
52 207
|
pm2.61dane |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 𝐼 𝑌 ) ) |