Step |
Hyp |
Ref |
Expression |
1 |
|
lagsubg.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
simpr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) |
3 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
4 |
2 3
|
sylib |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝒫 𝑋 ∈ Fin ) |
5 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) |
6 |
1 5
|
eqger |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
8 |
7
|
qsss |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ⊆ 𝒫 𝑋 ) |
9 |
4 8
|
ssfid |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin ) |
10 |
|
hashcl |
⊢ ( ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) |
12 |
11
|
nn0zd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ) |
13 |
|
id |
⊢ ( 𝑋 ∈ Fin → 𝑋 ∈ Fin ) |
14 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
15 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ Fin ) |
16 |
13 14 15
|
syl2anr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ Fin ) |
17 |
|
hashcl |
⊢ ( 𝑌 ∈ Fin → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
19 |
18
|
nn0zd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℤ ) |
20 |
|
dvdsmul2 |
⊢ ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑌 ) ∈ ℤ ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
21 |
12 19 20
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
23 |
1 5 22 2
|
lagsubg2 |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
24 |
21 23
|
breqtrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ♯ ‘ 𝑋 ) ) |