| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lagsubg.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
simpr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) |
| 3 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
| 4 |
2 3
|
sylib |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝒫 𝑋 ∈ Fin ) |
| 5 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) |
| 6 |
1 5
|
eqger |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 8 |
7
|
qsss |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ⊆ 𝒫 𝑋 ) |
| 9 |
4 8
|
ssfid |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin ) |
| 10 |
|
hashcl |
⊢ ( ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) |
| 12 |
11
|
nn0zd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ) |
| 13 |
|
id |
⊢ ( 𝑋 ∈ Fin → 𝑋 ∈ Fin ) |
| 14 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 15 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ Fin ) |
| 16 |
13 14 15
|
syl2anr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ Fin ) |
| 17 |
|
hashcl |
⊢ ( 𝑌 ∈ Fin → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
| 19 |
18
|
nn0zd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℤ ) |
| 20 |
|
dvdsmul2 |
⊢ ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑌 ) ∈ ℤ ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
| 21 |
12 19 20
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 23 |
1 5 22 2
|
lagsubg2 |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
| 24 |
21 23
|
breqtrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ♯ ‘ 𝑋 ) ) |