Step |
Hyp |
Ref |
Expression |
1 |
|
lagsubg.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
lagsubg.2 |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
3 |
|
lagsubg.3 |
⊢ ( 𝜑 → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
lagsubg.4 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
5 |
1 2
|
eqger |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
7 |
6 4
|
qshash |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = Σ 𝑥 ∈ ( 𝑋 / ∼ ) ( ♯ ‘ 𝑥 ) ) |
8 |
1 2
|
eqgen |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ≈ 𝑥 ) |
9 |
3 8
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ≈ 𝑥 ) |
10 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
12 |
4 11
|
ssfid |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ∈ Fin ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑋 ∈ Fin ) |
15 |
6
|
qsss |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ⊆ 𝒫 𝑋 ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑥 ∈ 𝒫 𝑋 ) |
17 |
16
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑥 ⊆ 𝑋 ) |
18 |
14 17
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → 𝑥 ∈ Fin ) |
19 |
|
hashen |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑌 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑌 ≈ 𝑥 ) ) |
20 |
13 18 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → ( ( ♯ ‘ 𝑌 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑌 ≈ 𝑥 ) ) |
21 |
9 20
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 / ∼ ) ) → ( ♯ ‘ 𝑌 ) = ( ♯ ‘ 𝑥 ) ) |
22 |
21
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( 𝑋 / ∼ ) ( ♯ ‘ 𝑌 ) = Σ 𝑥 ∈ ( 𝑋 / ∼ ) ( ♯ ‘ 𝑥 ) ) |
23 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
24 |
4 23
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
25 |
24 15
|
ssfid |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ∈ Fin ) |
26 |
|
hashcl |
⊢ ( 𝑌 ∈ Fin → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
27 |
12 26
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
28 |
27
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑌 ) ∈ ℂ ) |
29 |
|
fsumconst |
⊢ ( ( ( 𝑋 / ∼ ) ∈ Fin ∧ ( ♯ ‘ 𝑌 ) ∈ ℂ ) → Σ 𝑥 ∈ ( 𝑋 / ∼ ) ( ♯ ‘ 𝑌 ) = ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝑌 ) ) ) |
30 |
25 28 29
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( 𝑋 / ∼ ) ( ♯ ‘ 𝑌 ) = ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝑌 ) ) ) |
31 |
7 22 30
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝑌 ) ) ) |