| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latabs1.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | latabs1.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | latabs1.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 5 | 1 4 3 | latmle1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 ) ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 6 | 1 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 7 | 1 4 2 | latleeqj2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∧  𝑌 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋  ∧  𝑌 ) ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝑋  ∨  ( 𝑋  ∧  𝑌 ) )  =  𝑋 ) ) | 
						
							| 8 | 7 | 3com23 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑋  ∧  𝑌 )  ∈  𝐵 )  →  ( ( 𝑋  ∧  𝑌 ) ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝑋  ∨  ( 𝑋  ∧  𝑌 ) )  =  𝑋 ) ) | 
						
							| 9 | 6 8 | syld3an3 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ∧  𝑌 ) ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝑋  ∨  ( 𝑋  ∧  𝑌 ) )  =  𝑋 ) ) | 
						
							| 10 | 5 9 | mpbid | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  ( 𝑋  ∧  𝑌 ) )  =  𝑋 ) |