Step |
Hyp |
Ref |
Expression |
1 |
|
latabs1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latabs1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
latabs1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
1 4 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ) |
6 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
7 |
1 4 2
|
latleeqj2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
8 |
7
|
3com23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
9 |
6 8
|
syld3an3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
10 |
5 9
|
mpbid |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) |