Metamath Proof Explorer


Theorem latabs2

Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs2 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latabs1.b 𝐵 = ( Base ‘ 𝐾 )
latabs1.j = ( join ‘ 𝐾 )
latabs1.m = ( meet ‘ 𝐾 )
Assertion latabs2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( 𝑋 𝑌 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 latabs1.b 𝐵 = ( Base ‘ 𝐾 )
2 latabs1.j = ( join ‘ 𝐾 )
3 latabs1.m = ( meet ‘ 𝐾 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 1 4 2 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑌 ) )
6 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
7 1 4 3 latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑌 ) ↔ ( 𝑋 ( 𝑋 𝑌 ) ) = 𝑋 ) )
8 6 7 syld3an3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑌 ) ↔ ( 𝑋 ( 𝑋 𝑌 ) ) = 𝑋 ) )
9 5 8 mpbid ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( 𝑋 𝑌 ) ) = 𝑋 )