Step |
Hyp |
Ref |
Expression |
1 |
|
latabs1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latabs1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
latabs1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
1 4 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
6 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
7 |
1 4 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) = 𝑋 ) ) |
8 |
6 7
|
syld3an3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) = 𝑋 ) ) |
9 |
5 8
|
mpbid |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) = 𝑋 ) |