Metamath Proof Explorer


Theorem latasym

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b 𝐵 = ( Base ‘ 𝐾 )
latref.l = ( le ‘ 𝐾 )
Assertion latasym ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 latref.b 𝐵 = ( Base ‘ 𝐾 )
2 latref.l = ( le ‘ 𝐾 )
3 1 2 latasymb ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
4 3 biimpd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) )