Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latref.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latref.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | latasymb | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latref.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latref.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latpos | ⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) | |
| 4 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |