Metamath Proof Explorer


Theorem latasymb

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses latref.b 𝐵 = ( Base ‘ 𝐾 )
latref.l = ( le ‘ 𝐾 )
Assertion latasymb ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 latref.b 𝐵 = ( Base ‘ 𝐾 )
2 latref.l = ( le ‘ 𝐾 )
3 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
4 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
5 3 4 syl3an1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )