Step |
Hyp |
Ref |
Expression |
1 |
|
latcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latcl2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
latcl2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
latcl2.k |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
5 |
|
latcl2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
latcl2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
5 6
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
8 |
1 2 3
|
islat |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
9 |
4 8
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
10 |
9
|
simprld |
⊢ ( 𝜑 → dom ∨ = ( 𝐵 × 𝐵 ) ) |
11 |
7 10
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
12 |
9
|
simprrd |
⊢ ( 𝜑 → dom ∧ = ( 𝐵 × 𝐵 ) ) |
13 |
7 12
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
14 |
11 13
|
jca |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) ) |