Metamath Proof Explorer


Theorem latj12

Description: Swap 1st and 2nd members of lattice join. ( chj12 analog.) (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latj12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑌 ( 𝑋 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
4 3 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
5 4 oveq1d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑌 𝑋 ) 𝑍 ) )
6 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )
7 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
8 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
9 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
10 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
11 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑌𝐵𝑋𝐵𝑍𝐵 ) ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑌 ( 𝑋 𝑍 ) ) )
12 7 8 9 10 11 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑌 ( 𝑋 𝑍 ) ) )
13 5 6 12 3eqtr3d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑌 ( 𝑋 𝑍 ) ) )