Metamath Proof Explorer


Theorem latj32

Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in MegPav2002 p. 362. (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latj32 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
4 3 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
5 4 oveq2d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
6 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )
7 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
8 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
9 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
10 7 8 9 3jca ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) )
11 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( 𝑋 𝑍 ) 𝑌 ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
12 10 11 syldan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) 𝑌 ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
13 5 6 12 3eqtr4d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) 𝑌 ) )