Metamath Proof Explorer


Theorem latj4

Description: Rearrangement of lattice join of 4 classes. ( chj4 analog.) (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latj4 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 simp1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝐾 ∈ Lat )
4 simp2r ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑌𝐵 )
5 simp3l ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑍𝐵 )
6 simp3r ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑊𝐵 )
7 1 2 latj12 ( ( 𝐾 ∈ Lat ∧ ( 𝑌𝐵𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 ( 𝑍 𝑊 ) ) = ( 𝑍 ( 𝑌 𝑊 ) ) )
8 3 4 5 6 7 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 ( 𝑍 𝑊 ) ) = ( 𝑍 ( 𝑌 𝑊 ) ) )
9 8 oveq2d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
10 simp2l ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑋𝐵 )
11 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵 ) → ( 𝑍 𝑊 ) ∈ 𝐵 )
12 3 5 6 11 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑍 𝑊 ) ∈ 𝐵 )
13 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑍 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) )
14 3 10 4 12 13 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) )
15 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
16 3 4 6 15 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
17 1 2 latjass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑍𝐵 ∧ ( 𝑌 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
18 3 10 5 16 17 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
19 9 14 18 3eqtr4d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) )