Metamath Proof Explorer


Theorem latj4rot

Description: Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latj4rot ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑊 𝑋 ) ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 simp1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝐾 ∈ Lat )
4 simp3l ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑍𝐵 )
5 simp3r ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑊𝐵 )
6 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵 ) → ( 𝑍 𝑊 ) = ( 𝑊 𝑍 ) )
7 3 4 5 6 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑍 𝑊 ) = ( 𝑊 𝑍 ) )
8 7 oveq2d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑋 𝑌 ) ( 𝑊 𝑍 ) ) )
9 5 4 jca ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑊𝐵𝑍𝐵 ) )
10 1 2 latj4 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑊𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑊 𝑍 ) ) = ( ( 𝑋 𝑊 ) ( 𝑌 𝑍 ) ) )
11 9 10 syld3an3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑊 𝑍 ) ) = ( ( 𝑋 𝑊 ) ( 𝑌 𝑍 ) ) )
12 simp2l ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑋𝐵 )
13 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) = ( 𝑊 𝑋 ) )
14 3 12 5 13 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑋 𝑊 ) = ( 𝑊 𝑋 ) )
15 14 oveq1d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑊 ) ( 𝑌 𝑍 ) ) = ( ( 𝑊 𝑋 ) ( 𝑌 𝑍 ) ) )
16 8 11 15 3eqtrd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑊 𝑋 ) ( 𝑌 𝑍 ) ) )