Metamath Proof Explorer


Theorem latjjdi

Description: Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latjjdi ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
4 1 2 latjidm ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )
5 3 4 syldan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑋 ) = 𝑋 )
6 5 oveq1d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑋 ) ( 𝑌 𝑍 ) ) = ( 𝑋 ( 𝑌 𝑍 ) ) )
7 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
8 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
9 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
10 1 2 latj4 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑋𝐵 ) ∧ ( 𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑋 ) ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )
11 7 3 3 8 9 10 syl122anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑋 ) ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )
12 6 11 eqtr3d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )