Metamath Proof Explorer


Theorem latjjdir

Description: Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latjjdir ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 1 2 latjidm ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵 ) → ( 𝑍 𝑍 ) = 𝑍 )
4 3 3ad2antr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 𝑍 ) = 𝑍 )
5 4 oveq2d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑍 ) ) = ( ( 𝑋 𝑌 ) 𝑍 ) )
6 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
7 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
8 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
9 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
10 1 2 latj4 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑍 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
11 6 7 8 9 9 10 syl122anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑍 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
12 5 11 eqtr3d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )