Metamath Proof Explorer


Theorem latjlej1

Description: Add join to both sides of a lattice ordering. ( chlej1i analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latjlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → 𝑌 ( 𝑌 𝑍 ) )
5 4 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌 ( 𝑌 𝑍 ) )
6 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
7 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
8 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
9 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
10 9 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
11 1 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑌 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 𝑌𝑌 ( 𝑌 𝑍 ) ) → 𝑋 ( 𝑌 𝑍 ) ) )
12 6 7 8 10 11 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑌 ( 𝑌 𝑍 ) ) → 𝑋 ( 𝑌 𝑍 ) ) )
13 5 12 mpan2d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌𝑋 ( 𝑌 𝑍 ) ) )
14 1 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → 𝑍 ( 𝑌 𝑍 ) )
15 14 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍 ( 𝑌 𝑍 ) )
16 13 15 jctird ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 ( 𝑌 𝑍 ) ∧ 𝑍 ( 𝑌 𝑍 ) ) ) )
17 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
18 7 17 10 3jca ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋𝐵𝑍𝐵 ∧ ( 𝑌 𝑍 ) ∈ 𝐵 ) )
19 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑍𝐵 ∧ ( 𝑌 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( 𝑌 𝑍 ) ∧ 𝑍 ( 𝑌 𝑍 ) ) ↔ ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
20 18 19 syldan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 ( 𝑌 𝑍 ) ∧ 𝑍 ( 𝑌 𝑍 ) ) ↔ ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
21 16 20 sylibd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )