Metamath Proof Explorer


Theorem latjlej2

Description: Add join to both sides of a lattice ordering. ( chlej2i analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latjlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑍 𝑋 ) ( 𝑍 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 3 latjlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
5 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) = ( 𝑍 𝑋 ) )
6 5 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) = ( 𝑍 𝑋 ) )
7 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
8 7 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
9 6 8 breq12d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ↔ ( 𝑍 𝑋 ) ( 𝑍 𝑌 ) ) )
10 4 9 sylibd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑍 𝑋 ) ( 𝑍 𝑌 ) ) )