| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
1 2 3
|
latjlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 5 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
| 6 |
5
|
3adant3r2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
| 7 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 8 |
7
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 9 |
6 8
|
breq12d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ↔ ( 𝑍 ∨ 𝑋 ) ≤ ( 𝑍 ∨ 𝑌 ) ) ) |
| 10 |
4 9
|
sylibd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑍 ∨ 𝑋 ) ≤ ( 𝑍 ∨ 𝑌 ) ) ) |