Metamath Proof Explorer


Theorem latledi

Description: An ortholattice is distributive in one ordering direction. ( ledi analog.) (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses latledi.b 𝐵 = ( Base ‘ 𝐾 )
latledi.l = ( le ‘ 𝐾 )
latledi.j = ( join ‘ 𝐾 )
latledi.m = ( meet ‘ 𝐾 )
Assertion latledi ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑋 ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latledi.b 𝐵 = ( Base ‘ 𝐾 )
2 latledi.l = ( le ‘ 𝐾 )
3 latledi.j = ( join ‘ 𝐾 )
4 latledi.m = ( meet ‘ 𝐾 )
5 1 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑋 )
6 5 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) 𝑋 )
7 1 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) 𝑋 )
8 7 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) 𝑋 )
9 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
10 9 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
11 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
12 11 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
13 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
14 10 12 13 3jca ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑍 ) ∈ 𝐵𝑋𝐵 ) )
15 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑍 ) ∈ 𝐵𝑋𝐵 ) ) → ( ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑍 ) 𝑋 ) ↔ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) 𝑋 ) )
16 14 15 syldan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑍 ) 𝑋 ) ↔ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) 𝑋 ) )
17 6 8 16 mpbi2and ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) 𝑋 )
18 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑌 )
19 18 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) 𝑌 )
20 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) 𝑍 )
21 20 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) 𝑍 )
22 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
23 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
24 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
25 1 2 3 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 𝑌 ) ∈ 𝐵𝑌𝐵 ) ∧ ( ( 𝑋 𝑍 ) ∈ 𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) 𝑌 ∧ ( 𝑋 𝑍 ) 𝑍 ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑌 𝑍 ) ) )
26 22 10 23 12 24 25 syl122anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) 𝑌 ∧ ( 𝑋 𝑍 ) 𝑍 ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑌 𝑍 ) ) )
27 19 21 26 mp2and ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑌 𝑍 ) )
28 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ∈ 𝐵 )
29 22 10 12 28 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ∈ 𝐵 )
30 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
31 30 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
32 1 2 4 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ∈ 𝐵𝑋𝐵 ∧ ( 𝑌 𝑍 ) ∈ 𝐵 ) ) → ( ( ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) 𝑋 ∧ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑌 𝑍 ) ) ↔ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑋 ( 𝑌 𝑍 ) ) ) )
33 22 29 13 31 32 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) 𝑋 ∧ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑌 𝑍 ) ) ↔ ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑋 ( 𝑌 𝑍 ) ) ) )
34 17 27 33 mpbi2and ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) ( 𝑋 ( 𝑌 𝑍 ) ) )