| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
1 2
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 5 |
4
|
3adant2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 6 |
5
|
biantrud |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ) ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 10 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 11 |
7 8 9 9 10
|
syl13anc |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 12 |
6 11
|
bitrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 13 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 14 |
13
|
biantrud |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ↔ ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 15 |
12 14
|
bitrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 16 |
|
latpos |
⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 18 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 19 |
1 2
|
posasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |
| 20 |
17 18 9 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |
| 21 |
15 20
|
bitrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |