Metamath Proof Explorer


Theorem latleeqj1

Description: "Less than or equal to" in terms of join. ( chlejb1 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latleeqj1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 latref ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ) → 𝑌 𝑌 )
5 4 3adant2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌 𝑌 )
6 5 biantrud ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌𝑌 𝑌 ) ) )
7 simp1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Lat )
8 simp2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
9 simp3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
10 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑌𝐵 ) ) → ( ( 𝑋 𝑌𝑌 𝑌 ) ↔ ( 𝑋 𝑌 ) 𝑌 ) )
11 7 8 9 9 10 syl13anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑌 ) ↔ ( 𝑋 𝑌 ) 𝑌 ) )
12 6 11 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) 𝑌 ) )
13 1 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌 ( 𝑋 𝑌 ) )
14 13 biantrud ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) 𝑌 ↔ ( ( 𝑋 𝑌 ) 𝑌𝑌 ( 𝑋 𝑌 ) ) ) )
15 12 14 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( ( 𝑋 𝑌 ) 𝑌𝑌 ( 𝑋 𝑌 ) ) ) )
16 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
17 16 3ad2ant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Poset )
18 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
19 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑌𝐵 ) → ( ( ( 𝑋 𝑌 ) 𝑌𝑌 ( 𝑋 𝑌 ) ) ↔ ( 𝑋 𝑌 ) = 𝑌 ) )
20 17 18 9 19 syl3anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( 𝑋 𝑌 ) 𝑌𝑌 ( 𝑋 𝑌 ) ) ↔ ( 𝑋 𝑌 ) = 𝑌 ) )
21 15 20 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑌 ) )