Metamath Proof Explorer


Theorem latleeqj2

Description: "Less than or equal to" in terms of join. ( chlejb2 analog.) (Contributed by NM, 14-Nov-2011)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latleeqj2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑌 𝑋 ) = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 3 latleeqj1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑌 ) )
5 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
6 5 eqeq1d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) = 𝑌 ↔ ( 𝑌 𝑋 ) = 𝑌 ) )
7 4 6 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑌 𝑋 ) = 𝑌 ) )