Metamath Proof Explorer


Theorem latleeqm2

Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses latmle.b 𝐵 = ( Base ‘ 𝐾 )
latmle.l = ( le ‘ 𝐾 )
latmle.m = ( meet ‘ 𝐾 )
Assertion latleeqm2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑌 𝑋 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 latmle.b 𝐵 = ( Base ‘ 𝐾 )
2 latmle.l = ( le ‘ 𝐾 )
3 latmle.m = ( meet ‘ 𝐾 )
4 1 2 3 latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑋 ) )
5 1 3 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
6 5 eqeq1d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) = 𝑋 ↔ ( 𝑌 𝑋 ) = 𝑋 ) )
7 4 6 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑌 𝑋 ) = 𝑋 ) )