Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latleeqm2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑌 ∧ 𝑋 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | 1 2 3 | latleeqm1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) = 𝑋 ) ) |
| 5 | 1 3 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 6 | 5 | eqeq1d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) = 𝑋 ↔ ( 𝑌 ∧ 𝑋 ) = 𝑋 ) ) |
| 7 | 4 6 | bitrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑌 ∧ 𝑋 ) = 𝑋 ) ) |