| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latlej.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | latlej.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | latlej.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  Lat ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 8 | 1 3 7 4 5 6 | latcl2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∨   ∧  〈 𝑋 ,  𝑌 〉  ∈  dom  ( meet ‘ 𝐾 ) ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∨  ) | 
						
							| 10 | 1 2 3 4 5 6 9 | lejoin1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ≤  ( 𝑋  ∨  𝑌 ) ) |