Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
8 |
1 3 7 4 5 6
|
latcl2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ( meet ‘ 𝐾 ) ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
10 |
1 2 3 4 5 6 9
|
lejoin2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |