Metamath Proof Explorer


Theorem latlem

Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latlem.b 𝐵 = ( Base ‘ 𝐾 )
latlem.j = ( join ‘ 𝐾 )
latlem.m = ( meet ‘ 𝐾 )
Assertion latlem ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 latlem.b 𝐵 = ( Base ‘ 𝐾 )
2 latlem.j = ( join ‘ 𝐾 )
3 latlem.m = ( meet ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Lat )
5 simp2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
6 simp3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
7 opelxpi ( ( 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
8 7 3adant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
9 1 2 3 islat ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom = ( 𝐵 × 𝐵 ) ) ) )
10 simprl ( ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom = ( 𝐵 × 𝐵 ) ) ) → dom = ( 𝐵 × 𝐵 ) )
11 9 10 sylbi ( 𝐾 ∈ Lat → dom = ( 𝐵 × 𝐵 ) )
12 11 3ad2ant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → dom = ( 𝐵 × 𝐵 ) )
13 8 12 eleqtrrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
14 1 2 4 5 6 13 joincl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
15 simprr ( ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom = ( 𝐵 × 𝐵 ) ) ) → dom = ( 𝐵 × 𝐵 ) )
16 9 15 sylbi ( 𝐾 ∈ Lat → dom = ( 𝐵 × 𝐵 ) )
17 16 3ad2ant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → dom = ( 𝐵 × 𝐵 ) )
18 8 17 eleqtrrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
19 1 3 4 5 6 18 meetcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
20 14 19 jca ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ) )