| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latlem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
latlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
latlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 7 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 8 |
7
|
3adant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 9 |
1 2 3
|
islat |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| 10 |
|
simprl |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 11 |
9 10
|
sylbi |
⊢ ( 𝐾 ∈ Lat → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 13 |
8 12
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
| 14 |
1 2 4 5 6 13
|
joincl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 15 |
|
simprr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 16 |
9 15
|
sylbi |
⊢ ( 𝐾 ∈ Lat → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 18 |
8 17
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
| 19 |
1 3 4 5 6 18
|
meetcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 20 |
14 19
|
jca |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) ) |