Metamath Proof Explorer


Theorem latlem12

Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latmle.b 𝐵 = ( Base ‘ 𝐾 )
latmle.l = ( le ‘ 𝐾 )
latmle.m = ( meet ‘ 𝐾 )
Assertion latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑋 𝑍 ) ↔ 𝑋 ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latmle.b 𝐵 = ( Base ‘ 𝐾 )
2 latmle.l = ( le ‘ 𝐾 )
3 latmle.m = ( meet ‘ 𝐾 )
4 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
5 4 adantr ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Poset )
6 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
7 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
8 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
9 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
10 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
11 1 9 3 10 6 7 latcl2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ⟨ 𝑌 , 𝑍 ⟩ ∈ dom ( join ‘ 𝐾 ) ∧ ⟨ 𝑌 , 𝑍 ⟩ ∈ dom ) )
12 11 simprd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ⟨ 𝑌 , 𝑍 ⟩ ∈ dom )
13 1 2 3 5 6 7 8 12 meetle ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑋 𝑍 ) ↔ 𝑋 ( 𝑌 𝑍 ) ) )