Metamath Proof Explorer


Theorem latm12

Description: A rearrangement of lattice meet. ( in12 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olmass.b 𝐵 = ( Base ‘ 𝐾 )
olmass.m = ( meet ‘ 𝐾 )
Assertion latm12 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑌 ( 𝑋 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 olmass.b 𝐵 = ( Base ‘ 𝐾 )
2 olmass.m = ( meet ‘ 𝐾 )
3 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
4 3 adantr ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
5 simpr1 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
6 simpr2 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
7 1 2 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
8 4 5 6 7 syl3anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
9 8 oveq1d ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑌 𝑋 ) 𝑍 ) )
10 1 2 latmassOLD ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )
11 simpr3 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
12 6 5 11 3jca ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌𝐵𝑋𝐵𝑍𝐵 ) )
13 1 2 latmassOLD ( ( 𝐾 ∈ OL ∧ ( 𝑌𝐵𝑋𝐵𝑍𝐵 ) ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑌 ( 𝑋 𝑍 ) ) )
14 12 13 syldan ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑌 ( 𝑋 𝑍 ) ) )
15 9 10 14 3eqtr3d ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑌 ( 𝑋 𝑍 ) ) )