Metamath Proof Explorer


Theorem latm4

Description: Rearrangement of lattice meet of 4 classes. ( in4 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olmass.b 𝐵 = ( Base ‘ 𝐾 )
olmass.m = ( meet ‘ 𝐾 )
Assertion latm4 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 olmass.b 𝐵 = ( Base ‘ 𝐾 )
2 olmass.m = ( meet ‘ 𝐾 )
3 simp1 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝐾 ∈ OL )
4 simp2r ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑌𝐵 )
5 simp3l ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑍𝐵 )
6 simp3r ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑊𝐵 )
7 1 2 latm12 ( ( 𝐾 ∈ OL ∧ ( 𝑌𝐵𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 ( 𝑍 𝑊 ) ) = ( 𝑍 ( 𝑌 𝑊 ) ) )
8 3 4 5 6 7 syl13anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 ( 𝑍 𝑊 ) ) = ( 𝑍 ( 𝑌 𝑊 ) ) )
9 8 oveq2d ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
10 simp2l ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝑋𝐵 )
11 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
12 11 3ad2ant1 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → 𝐾 ∈ Lat )
13 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵 ) → ( 𝑍 𝑊 ) ∈ 𝐵 )
14 12 5 6 13 syl3anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑍 𝑊 ) ∈ 𝐵 )
15 1 2 latmassOLD ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑍 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) )
16 3 10 4 14 15 syl13anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( 𝑋 ( 𝑌 ( 𝑍 𝑊 ) ) ) )
17 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
18 12 4 6 17 syl3anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
19 1 2 latmassOLD ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑍𝐵 ∧ ( 𝑌 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
20 3 10 5 18 19 syl13anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) = ( 𝑋 ( 𝑍 ( 𝑌 𝑊 ) ) ) )
21 9 16 20 3eqtr4d ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑍𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌 ) ( 𝑍 𝑊 ) ) = ( ( 𝑋 𝑍 ) ( 𝑌 𝑊 ) ) )