Metamath Proof Explorer


Theorem latmass

Description: Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses latmass.b 𝐵 = ( Base ‘ 𝐾 )
latmass.m = ( meet ‘ 𝐾 )
Assertion latmass ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latmass.b 𝐵 = ( Base ‘ 𝐾 )
2 latmass.m = ( meet ‘ 𝐾 )
3 eqid ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 )
4 3 odulat ( 𝐾 ∈ Lat → ( ODual ‘ 𝐾 ) ∈ Lat )
5 3 1 odubas 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) )
6 3 2 odujoin = ( join ‘ ( ODual ‘ 𝐾 ) )
7 5 6 latjass ( ( ( ODual ‘ 𝐾 ) ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )
8 4 7 sylan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 𝑍 ) ) )