Description: Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
latmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
Assertion | latmass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | latmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
3 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
4 | 3 | odulat | ⊢ ( 𝐾 ∈ Lat → ( ODual ‘ 𝐾 ) ∈ Lat ) |
5 | 3 1 | odubas | ⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
6 | 3 2 | odujoin | ⊢ ∧ = ( join ‘ ( ODual ‘ 𝐾 ) ) |
7 | 5 6 | latjass | ⊢ ( ( ( ODual ‘ 𝐾 ) ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
8 | 4 7 | sylan | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |