Step |
Hyp |
Ref |
Expression |
1 |
|
olmass.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
olmass.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
simpl |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ OL ) |
4 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
6 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ OP ) |
8 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
10 |
1 9
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
11 |
7 8 10
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
13 |
1 9
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
14 |
7 12 13
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
16 |
1 15
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
17 |
5 11 14 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
18 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
19 |
1 15 2 9
|
oldmj3 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) ) |
20 |
3 17 18 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) ) |
21 |
1 9
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) |
22 |
7 18 21
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) |
23 |
1 15
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) |
24 |
5 11 14 22 23
|
syl13anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
26 |
1 15 2 9
|
oldmj4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∧ 𝑌 ) ) |
27 |
26
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∧ 𝑌 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) = ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) ) |
29 |
20 25 28
|
3eqtr3rd |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
30 |
1 15
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) |
31 |
5 14 22 30
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) |
32 |
1 15 2 9
|
oldmj2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
33 |
3 8 31 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
34 |
1 15 2 9
|
oldmj4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( 𝑌 ∧ 𝑍 ) ) |
35 |
34
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( 𝑌 ∧ 𝑍 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
37 |
29 33 36
|
3eqtrd |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |