Description: Closure of meet operation in a lattice. ( incom analog.) (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latmcl.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latmcl.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 4 | 1 3 2 | latlem | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |