| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latmcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | latmcom.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 3 |  | opelxpi | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 5 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 6 | 1 5 2 | islat | ⊢ ( 𝐾  ∈  Lat  ↔  ( 𝐾  ∈  Poset  ∧  ( dom  ( join ‘ 𝐾 )  =  ( 𝐵  ×  𝐵 )  ∧  dom   ∧   =  ( 𝐵  ×  𝐵 ) ) ) ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( dom  ( join ‘ 𝐾 )  =  ( 𝐵  ×  𝐵 )  ∧  dom   ∧   =  ( 𝐵  ×  𝐵 ) ) )  →  dom   ∧   =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 8 | 6 7 | sylbi | ⊢ ( 𝐾  ∈  Lat  →  dom   ∧   =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  dom   ∧   =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 10 | 4 9 | eleqtrrd | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∧  ) | 
						
							| 11 |  | opelxpi | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  〈 𝑌 ,  𝑋 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑌 ,  𝑋 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 13 | 12 | 3adant1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑌 ,  𝑋 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 14 | 13 9 | eleqtrrd | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  〈 𝑌 ,  𝑋 〉  ∈  dom   ∧  ) | 
						
							| 15 | 10 14 | jca | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∧   ∧  〈 𝑌 ,  𝑋 〉  ∈  dom   ∧  ) ) | 
						
							| 16 |  | latpos | ⊢ ( 𝐾  ∈  Lat  →  𝐾  ∈  Poset ) | 
						
							| 17 | 1 2 | meetcom | ⊢ ( ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∧   ∧  〈 𝑌 ,  𝑋 〉  ∈  dom   ∧  ) )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) | 
						
							| 18 | 16 17 | syl3anl1 | ⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∧   ∧  〈 𝑌 ,  𝑋 〉  ∈  dom   ∧  ) )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) | 
						
							| 19 | 15 18 | mpdan | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) |