Step |
Hyp |
Ref |
Expression |
1 |
|
latmidm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latmidm.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
5 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) ∈ 𝐵 ) |
6 |
5
|
3anidm23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
1 3 2
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) ( le ‘ 𝐾 ) 𝑋 ) |
9 |
8
|
3anidm23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) ( le ‘ 𝐾 ) 𝑋 ) |
10 |
1 3
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
11 |
1 3 2
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑋 ) ) ) |
12 |
4 7 7 7 11
|
syl13anc |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑋 ) ) ) |
13 |
10 10 12
|
mpbi2and |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑋 ) ) |
14 |
1 3 4 6 7 9 13
|
latasymd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) = 𝑋 ) |