| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latmidm.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							latmidm.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Lat )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧  𝑋 )  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							3anidm23 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧  𝑋 )  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								1 3 2
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧  𝑋 ) ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 9 | 
							
								8
							 | 
							3anidm23 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧  𝑋 ) ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							latref | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝑋 ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 11 | 
							
								1 3 2
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋  ∧  𝑋 ( le ‘ 𝐾 ) 𝑋 )  ↔  𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∧  𝑋 ) ) )  | 
						
						
							| 12 | 
							
								4 7 7 7 11
							 | 
							syl13anc | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋  ∧  𝑋 ( le ‘ 𝐾 ) 𝑋 )  ↔  𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∧  𝑋 ) ) )  | 
						
						
							| 13 | 
							
								10 10 12
							 | 
							mpbi2and | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∧  𝑋 ) )  | 
						
						
							| 14 | 
							
								1 3 4 6 7 9 13
							 | 
							latasymd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧  𝑋 )  =  𝑋 )  |