Metamath Proof Explorer


Theorem latmidm

Description: Lattice meet is idempotent. Analogue of inidm . (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latmidm.b 𝐵 = ( Base ‘ 𝐾 )
latmidm.m = ( meet ‘ 𝐾 )
Assertion latmidm ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 latmidm.b 𝐵 = ( Base ‘ 𝐾 )
2 latmidm.m = ( meet ‘ 𝐾 )
3 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝐾 ∈ Lat )
5 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵 ) → ( 𝑋 𝑋 ) ∈ 𝐵 )
6 5 3anidm23 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) ∈ 𝐵 )
7 simpr ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋𝐵 )
8 1 3 2 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵 ) → ( 𝑋 𝑋 ) ( le ‘ 𝐾 ) 𝑋 )
9 8 3anidm23 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) ( le ‘ 𝐾 ) 𝑋 )
10 1 3 latref ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 )
11 1 3 2 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑋𝐵𝑋𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑋 ) ) )
12 4 7 7 7 11 syl13anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑋 ) ) )
13 10 10 12 mpbi2and ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 𝑋 ) )
14 1 3 4 6 7 9 13 latasymd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )