Step |
Hyp |
Ref |
Expression |
1 |
|
latmle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latmle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latmle.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
8 |
1 7 3 4 5 6
|
latcl2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ( join ‘ 𝐾 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) ) |
9 |
8
|
simprd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
10 |
1 2 3 4 5 6 9
|
lemeet2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |