Metamath Proof Explorer


Theorem latmlej11

Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses latledi.b 𝐵 = ( Base ‘ 𝐾 )
latledi.l = ( le ‘ 𝐾 )
latledi.j = ( join ‘ 𝐾 )
latledi.m = ( meet ‘ 𝐾 )
Assertion latmlej11 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) )

Proof

Step Hyp Ref Expression
1 latledi.b 𝐵 = ( Base ‘ 𝐾 )
2 latledi.l = ( le ‘ 𝐾 )
3 latledi.j = ( join ‘ 𝐾 )
4 latledi.m = ( meet ‘ 𝐾 )
5 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
6 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
7 6 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
8 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
9 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
10 9 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
11 1 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑋 )
12 11 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) 𝑋 )
13 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → 𝑋 ( 𝑋 𝑍 ) )
14 13 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋 ( 𝑋 𝑍 ) )
15 1 2 5 7 8 10 12 14 lattrd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) )