Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
Assertion | latmlej12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑍 ∨ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
4 | latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
5 | 1 2 3 4 | latmlej11 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∨ 𝑍 ) ) |
6 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
7 | 6 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
8 | 5 7 | breqtrd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑍 ∨ 𝑋 ) ) |