Metamath Proof Explorer


Theorem latmlem1

Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011)

Ref Expression
Hypotheses latmle.b 𝐵 = ( Base ‘ 𝐾 )
latmle.l = ( le ‘ 𝐾 )
latmle.m = ( meet ‘ 𝐾 )
Assertion latmlem1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 latmle.b 𝐵 = ( Base ‘ 𝐾 )
2 latmle.l = ( le ‘ 𝐾 )
3 latmle.m = ( meet ‘ 𝐾 )
4 1 2 3 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) 𝑋 )
5 4 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) 𝑋 )
6 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
7 1 3 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
8 7 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
9 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
10 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
11 1 2 lattr ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 𝑍 ) ∈ 𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( ( 𝑋 𝑍 ) 𝑋𝑋 𝑌 ) → ( 𝑋 𝑍 ) 𝑌 ) )
12 6 8 9 10 11 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑍 ) 𝑋𝑋 𝑌 ) → ( 𝑋 𝑍 ) 𝑌 ) )
13 5 12 mpand ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) 𝑌 ) )
14 1 2 3 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) 𝑍 )
15 14 3adant3r2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) 𝑍 )
16 13 15 jctird ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( ( 𝑋 𝑍 ) 𝑌 ∧ ( 𝑋 𝑍 ) 𝑍 ) ) )
17 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
18 8 10 17 3jca ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) ∈ 𝐵𝑌𝐵𝑍𝐵 ) )
19 1 2 3 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 𝑍 ) ∈ 𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑍 ) 𝑌 ∧ ( 𝑋 𝑍 ) 𝑍 ) ↔ ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
20 18 19 syldan ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑍 ) 𝑌 ∧ ( 𝑋 𝑍 ) 𝑍 ) ↔ ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )
21 16 20 sylibd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) ) )