Step |
Hyp |
Ref |
Expression |
1 |
|
latmle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latmle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latmle.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
1 2 3
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ) ) |
5 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) = ( 𝑍 ∧ 𝑋 ) ) |
6 |
5
|
3adant3r2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) = ( 𝑍 ∧ 𝑋 ) ) |
7 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑍 ) = ( 𝑍 ∧ 𝑌 ) ) |
8 |
7
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∧ 𝑍 ) = ( 𝑍 ∧ 𝑌 ) ) |
9 |
6 8
|
breq12d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ↔ ( 𝑍 ∧ 𝑋 ) ≤ ( 𝑍 ∧ 𝑌 ) ) ) |
10 |
4 9
|
sylibd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑍 ∧ 𝑋 ) ≤ ( 𝑍 ∧ 𝑌 ) ) ) |