Metamath Proof Explorer


Theorem latmrot

Description: Rotate lattice meet of 3 classes. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses olmass.b 𝐵 = ( Base ‘ 𝐾 )
olmass.m = ( meet ‘ 𝐾 )
Assertion latmrot ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑍 𝑋 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 olmass.b 𝐵 = ( Base ‘ 𝐾 )
2 olmass.m = ( meet ‘ 𝐾 )
3 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
4 3 adantr ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
5 simpr1 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
6 simpr2 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
7 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
8 4 5 6 7 syl3anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
9 simpr3 ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
10 1 2 latmcom ( ( 𝐾 ∈ Lat ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
11 4 8 9 10 syl3anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
12 simpl ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ OL )
13 1 2 latmassOLD ( ( 𝐾 ∈ OL ∧ ( 𝑍𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑍 𝑋 ) 𝑌 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
14 12 9 5 6 13 syl13anc ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑍 𝑋 ) 𝑌 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
15 11 14 eqtr4d ( ( 𝐾 ∈ OL ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑍 𝑋 ) 𝑌 ) )