Step |
Hyp |
Ref |
Expression |
1 |
|
latnle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latnle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latnle.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
latnle.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
1 2 4
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
6 |
5
|
biantrurd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
7 |
1 2 4
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∨ 𝑋 ) = 𝑋 ) ) |
8 |
7
|
3com23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∨ 𝑋 ) = 𝑋 ) ) |
9 |
|
eqcom |
⊢ ( ( 𝑌 ∨ 𝑋 ) = 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) |
10 |
8 9
|
bitrdi |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) ) |
11 |
1 4
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
12 |
11
|
eqeq2d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( 𝑋 ∨ 𝑌 ) ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) ) |
13 |
10 12
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ 𝑋 = ( 𝑋 ∨ 𝑌 ) ) ) |
14 |
13
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) |
15 |
1 4
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
16 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
17 |
15 16
|
syld3an3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
18 |
6 14 17
|
3bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑌 ) ) ) |