Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
5 |
4
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
6 |
|
breq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ↔ 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑌 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
8 |
7
|
necon3bd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → 𝑋 ≠ 𝑌 ) ) |
9 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
10 |
9
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
11 |
|
breq1 |
⊢ ( 𝑋 = 𝑍 → ( 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ↔ 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
12 |
10 11
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑍 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
13 |
12
|
necon3bd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → 𝑋 ≠ 𝑍 ) ) |
14 |
8 13
|
jcad |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) ) |
15 |
14
|
3impia |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) |